

Transforming HR Results Through Six Sigma

Fuller, Jones & Associates, Inc.

The Nature of HR Problems

Optimizing Six Sigma for HR

HR's Role in The Organizational Selection and Deployment of Six Sigma

The Nature of HR Problems

Optimizing Six Sigma for HR

HR's Role in The Organizational Selection and Deployment of Six Sigma

 Six Sigma as a measurement standard can be traced back to Carl Frederick Gauss (1777-1885) who introduced the concept of the normal distribution / curve.

 Six Sigma as a measurement standard in product variation can be traced back to the 1920's when Walter Shewhart introduced statistical control charts.

In the early and mid-1980s with Chairman Bob Galvin at the helm, Motorola wanted to measure the defects per million, instead of thousands, opportunities.

 Motorola developed this new standard and created the methodology and needed cultural change associated with it.

 Leaders such as Larry Bossidy of Allied Signal (now Honeywell), and Jack Welch of General Electric Company popularized the approach in the US.

Evolution Of Six Sigma

Key Advantages of Six Sigma

- Establishes a Common Language and Approach to Problem Solving
- Systematic Approach to Problem Solving
- Provides New Capabilities for Problem Solving
- Establishes Focus on Reduction of Variability and Waste Elimination

Six Sigma "can" Take Problem Solving to a New Level

Six Sigma Infrastructure Requirements

Traditional Lean Six Sigma Requires Significant Dedicated Resources and The Use Of Artificial Organizational Constructs

Lean Six Sigma Tool Focus

Emphasizes The Majority Of Tools Across Lean Manufacturing And Six Sigma, Regardless of Frequency Of Use

Tool Examples	
Many BB's & Proj.'s	Select Jidoka
Statistical Hypothesis	Define Sample Size
"LEI" Value Stream Maps	Measure GLM GLM SKU
Statistical Test(s)	Analyze
Test P-value	Improve
Control Chart	Control

The Tool Focus Creates a Caste System of Knowledge

Application Opportunities

Typically Only Used For BIG Problems, "3-6 months"

Impact of the Drawbacks

Critoria			
GIRCHA	Traditional Lean Six Sigma		
Training time	80~160 hours		
Trainers	External Experts		
Organizational Construct	A "Fifth Column" of Internal Experts		
Org. Knowledge Transfer	Low – stays with a few experts		
Project Cycle time	4 - 6 months		
Program Scalability	Few "Experts"		
Focus	Tool Knowledge		

Because the Drawbacks Are Significant, Most Six Sigma Programs Don't Last Beyond 3-4 Years

Nature of HR Problems

Optimizing Six Sigma for HR

HR's Role in The Organizational Selection and Deployment of Six Sigma

- Processes are not well defined
- End-to-end process outcome thinking (and accountability) is not prevalent
- Data is mostly qualitative and discrete
- Process Performance data (defect levels, cycle time, etc) does not exist and is difficult to access

HR Problems Are Transactional In Nature, and Process Performance Info is Sparse

Useful Concepts and Tools

Process Mapping

Process 5-Why

Multi-Level Pareto's

Lean Concepts Targeting Waste Elimination and Cycle Time Reduction

 Value-add and Non-Value Add For Outsourcing

Customization to HR and the Organization is Key, The Concepts and Tools Needed Mostly are Far Less Than the Standard Six Sigma Program

Nature of HR Problems

Optimizing Six Sigma for HR

HR's Role in The Organizational Selection and Deployment of Six Sigma

Transforming problem solving behaviors

 How leaders can lead ("what ever is interesting to my boss is completely fascinating to me")

The nature of the problems

The choices of tools and approaches

Optimizing Six Sigma for the HR is Key

Similarities Between PDCA, 7 Step, 8D, TOC, Lean and Performance Excellence

Dem	ing Auto Industry, Etc. ↓	Center For Quality Mgmt	Goldratts	Toyota, LEI, Juran, Etc.	Motorola, GE, etc "Most Recognized"
PDCA	8D	7-Step	Theory of Constraints	Lean Mfg, JIT, DFT	Six Sigma "DMAIC"
PLAN	1st Discipline - Form Team 2nd Discipline - Define Problem 4th Discipline - Contain the Problem 1st Discipline cont.	1. Define and Contain the Problem	Identify Constraint	Identify cycle time and WIP reduction as major issue	Define • Define Problem • Define Scope • Define Goal
		2. Measure the Problem		Establish cycle time and WIP baselines	Measure Establish the Baseline
	3rd Discipline - Root Cause Description	3. Root Cause Analysis	Decide How To Exploit Constraint	Conduct Analysis: Value Stream Eliminate Waste	Analyze Root Cause Analysis
DO	5th Discipline - Permanent CA Plan	4. Plan and Implement Improvement	Subordinate Everthing To The Above	Improve and verify effectivess	Improve Develop Solution Assess Risk of Implementing Solution
CHECK	6th Discipline - Verify Effectiveness	5. Evaluate effectiveness	Elevate Constraint		 Demonstrate Solution, Validate Primary Metrics
ACT	7th Discipline - Prevent Recurrence	6. Standardize & Control 7. Realize & Reflect		Establish controls	Control Establish Controls and Action Plans

Many choices to the approach, which are essentially the same. Any Framework Will Work, But Choose Best Practice Deliverables That Fit

Transforming Behaviors Thru Deliverables

Steps	Deliverables	Tools
Select Problem	Measure Problem Solving Behavior	Typically Requires Only <i>Basic</i> Tools
Define and Contain the Problem		Such As Run Charts,
Measure the Problem	Through Key Deliverables	Pareto Charts,
Root Cause Analysis		5-Why Analysis,Value Stream,
Implement and Assess Solution	At Every Step	Risk Analysis,
Control and Standardize Solution		 As Needed Statistics etc

Focusing on Key Deliverables Needed Most of the Time, Rather Than Tools That are Rarely Needed

The Evolution of Process Improvement

Critoria	Measures Of Success & Deployment			
Cinteria	Traditional Lean Six Sigma	Customized Six Sigma		
Training time	80~160 hours	12 - 14 hours		
Trainers	External Experts	Managers and Leaders		
Organizational Construct	A "Fifth Column" of Internal Experts	Leaders Lead		
Org. Knowledge Transfer	Low – stays with a few experts	High – deploys across an enterprise		
Project Cycle time	4 - 6 months	6 - 8 weeks		
Program Scalability	Few "Experts"	Enterprise-wide		
Focus	Tool Knowledge	Deliverables That Drive Behavior		

Customization Is the Key to More Results in a Shorter Time, and The Programs Long-Term Adoption

HR Process Improvement Success Stories

• Hiring Cycle Time:

- The hiring cycle time is too long causing work-arounds, misclassifications, rework and organizational frustration.
- Estimated impact is \$1.1M
- Analysis revealed that batch processing and undefined critical fields were causing most of the delays

Data Integrity:

- The employee information contained in the HR System of record (e.g. personal and job related information) differs from Payroll information. This results in the inability to properly account for department headcount and the associated employee costs along with causing excessive rework to both Payroll and HR systems.
- Estimated impact is \$1.6M

Customization Allowed for Fast Project Cycle Times

Process Improvement Success Stories

- Finance: Seamless Outsourcing of RTR -> \$2.5M
 - Conventional Wisdom: Outsource all activity having faith that those taking ownership know what to do
 - Reality: Identified value-add activity to be kept in-house and established precise SLA's for nonvalue add to be outsourced
- Software: Improved Customer Fulfillment to 99.3% from 89% -> \$10M
 - Conventional Wisdom: Most orders arriving were incomplete
 - Reality: Showed missing information not an issue; equipment, timeliness of information and order structure were the major obstacles
- Medical Device: Reduced Complaint Resolution Time from 300 to 39 days -> \$M's
 - Conventional Wisdom: Not enough resources
 - Reality: Identified a constraint that created a large batch process (+100 complaints) at Evaluation, which hindered the flow of information
- **Manufacturing:** Reduced Cycle Time Avg, Variability & WIP 50% -> \$30M
 - Conventional Wisdom: Testing equipment was a bottleneck, needed to purchase more equipment and hire more people
 - Reality: Showed test equipment idle ~50% of the time; upstream product grouping and synchronization were the primary issues

All Results Achieved Within 6-8 Weeks, by Regular Staff as Part of Their Normal Work Activity !

Nature of HR Problems

Optimizing Six Sigma for HR

HR's Role in The Organizational Selection and Deployment of Six Sigma

Why Can't We...

- Leverage existing people/practices
- Have management actively lead their employees
- Leverage program to identify and develop future leaders
- Deploy in many areas at once, with focus on key problems
- Use your existing infrastructure
- Reduce problem solving cycle time
- Generate results beyond traditional expectations
- Connect many efforts into one
- Use the approach for all types of challenges
- Integrate best practices from Six Sigma, Lean, TOC, etc
- Transform management and staff behaviors

HR has a Major Role to Play in Guiding The Organization's Approach to Six Sigma

Thank You !

FULLER, JONES & ASSOCIATES, INC.

<u>www.fullerjonesassociates.com</u> 4000 Pimlico Drive, Suite 114 Pleasanton, CA 94588 Tel: 866-479-4979 Fax: 925-369-0417

Dr. Howard T. Fuller <u>hfuller@fullerjonesassociates.com</u> Direct: 925-413-2255

Andrew M. Jones, MBA <u>ajones@fullerjonesassociates.com</u> Direct: 925-922-1225

Background

Dr. Howard T. Fuller:

- Principal Fuller, Jones & Associates, Inc.
- Corporate VP of Quality & Reliability SanDisk
- Corporate VP of Quality & Operational Excellence Solectron Corporation
- Corporate Director of Design For Six Sigma Seagate Technology
- Manager, Process Improvement LifeScan, a Johnson & Johnson Co.
- Adjunct Professor at San Jose State University ISE
- Ph.D. in Quality Engineering, M.S. in Math/Statistics
- Published over 25 papers in leading journals

Andrew M. Jones, MBA:

- Principal Fuller, Jones & Associates, Inc.
- Director, Process Excellence Intuit
- Director, Performance Improvement Office GMAC Mortgage
- Sr. Manager, Business Process Development Group Cisco
- Consultant, Reengineering & Change Management Office Sony Pictures
- Sr. Examiner, Baldrige National Quality Program
- Six Sigma Program Manager, Master Black Belt
- MBA, International Business